• <fieldset id="8imwq"><menu id="8imwq"></menu></fieldset>
  • <bdo id="8imwq"><input id="8imwq"></input></bdo>
    最新文章專題視頻專題問答1問答10問答100問答1000問答2000關鍵字專題1關鍵字專題50關鍵字專題500關鍵字專題1500TAG最新視頻文章推薦1 推薦3 推薦5 推薦7 推薦9 推薦11 推薦13 推薦15 推薦17 推薦19 推薦21 推薦23 推薦25 推薦27 推薦29 推薦31 推薦33 推薦35 推薦37視頻文章20視頻文章30視頻文章40視頻文章50視頻文章60 視頻文章70視頻文章80視頻文章90視頻文章100視頻文章120視頻文章140 視頻2關鍵字專題關鍵字專題tag2tag3文章專題文章專題2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章專題3
    問答文章1 問答文章501 問答文章1001 問答文章1501 問答文章2001 問答文章2501 問答文章3001 問答文章3501 問答文章4001 問答文章4501 問答文章5001 問答文章5501 問答文章6001 問答文章6501 問答文章7001 問答文章7501 問答文章8001 問答文章8501 問答文章9001 問答文章9501
    當前位置: 首頁 - 科技 - 知識百科 - 正文

    傾斜值傳入導致sql資源消耗升高的案例分析

    來源:懂視網 責編:小采 時間:2020-11-09 13:01:17
    文檔

    傾斜值傳入導致sql資源消耗升高的案例分析

    傾斜值傳入導致sql資源消耗升高的案例分析:局方監控系統反饋2014-12-31 19:30:00-20:00:00這段時間db time上升較大,sql_id 88wdzpr9mv2wy消耗了12%以上的db time sql在shared pool的執行計劃 sys@CRMDB4select * from table(dbms_xplan.display_curs
    推薦度:
    導讀傾斜值傳入導致sql資源消耗升高的案例分析:局方監控系統反饋2014-12-31 19:30:00-20:00:00這段時間db time上升較大,sql_id 88wdzpr9mv2wy消耗了12%以上的db time sql在shared pool的執行計劃 sys@CRMDB4select * from table(dbms_xplan.display_curs

    局方監控系統反饋2014-12-31 19:30:00-20:00:00這段時間db time上升較大,sql_id 88wdzpr9mv2wy消耗了12%以上的db time sql在shared pool的執行計劃 sys@CRMDB4select * from table(dbms_xplan.display_cursor('88wdzpr9mv2wy')); PLAN_TABLE_OUTPUT ---

    局方監控系統反饋2014-12-31 19:30:00-20:00:00這段時間db time上升較大,sql_id 88wdzpr9mv2wy消耗了12%以上的db time

    sql在shared pool的執行計劃

    sys@CRMDB4>select * from table(dbms_xplan.display_cursor('88wdzpr9mv2wy'));

    PLAN_TABLE_OUTPUT
    -------------------------------------------------------------------------------------------------------------------------------------------------------------
    SQL_ID 88wdzpr9mv2wy, child number 0
    -------------------------------------
    SELECT RECEPTION_ID,
    TRADE_CODE,
    AMOUNT,
    BANK_TYPE,
    ACCOUNT_TYPE,
    SRC_ACCOUNT_ID,
    DEST_ACCOUNT_ID,
    DEAL_TIME,
    RESULT,
    REC_TYPE,
    STATUS,
    entity_id,
    balance,
    is_rollback
    FROM (SELECT b.RECEPTION_ID,
    b.TRADE_CODE,
    b.AMOUNT,
    b.BANK_TYPE,
    b.ACCOUNT_TYPE,
    b.SRC_ACCOUNT_ID,
    b.DEST_ACCOUNT_ID,
    b.DEAL_TIME,
    b.RESULT,
    b.REC_TYPE,
    b.STATUS,
    b.entity_id,
    b.balance,
    b.is_rollback,
    rownum AS rn
    FROM (SELECT t.RECEPTION_ID,
    t.TRADE_CODE,
    t.AMOUNT,
    t.BANK_TYPE,
    t.ACCOUNT_TYPE,
    t.SRC_ACCOUNT_ID,
    t.DEST_ACCOUNT_ID,
    t.DEAL_TIME,
    t.RESULT,
    m.REC_TYPE,
    m.STATUS,
    m.entity_id,
    m.balance,
    m.is_rollback
    FROM cvs_rec_banktask t, cvs_reception m
    WHERE t.RECEPTION_ID = m.RECEPTION_ID
    AND t.DEAL_TIME BETWEEN to_date(:StartData, 'yyyymmdd') AND
    to_date(:EndtData, 'yyyymmdd') + 1
    AND t.ACCOUNT_TYPE = :AccountType
    AND m.org_id = :SiteId
    AND m.region = t.region
    AND m.region = :Region
    ORDER BY t.DEAL_TIME DESC) b
    WHERE rownum <= to_number(:up) * to_number(:down))
    WHERE rn > to_number(:up) * to_number(:down) - to_number(:down);

    Plan hash value: 511419205

    --------------------------------------------------------------------------------------------------------
    | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
    --------------------------------------------------------------------------------------------------------
    | 0 | SELECT STATEMENT | | 1239 | 245K| 4582 (1)| 00:00:55 |
    |* 1 | VIEW | | 1239 | 245K| 4582 (1)| 00:00:55 |
    |* 2 | COUNT STOPKEY | | | | | |
    | 3 | VIEW | | 1239 | 229K| 4582 (1)| 00:00:55 |
    |* 4 | SORT ORDER BY STOPKEY | | 1239 | 168K| 4582 (1)| 00:00:55 |
    |* 5 | FILTER | | | | | |
    |* 6 | TABLE ACCESS BY INDEX ROWID | CVS_REC_BANKTASK | 1 | 77 | 3 (0)| 00:00:01 |
    | 7 | NESTED LOOPS | | 1239 | 168K| 4581 (1)| 00:00:55 |
    |* 8 | TABLE ACCESS BY INDEX ROWID| CVS_RECEPTION | 1239 | 76818 | 862 (1)| 00:00:11 |
    |* 9 | INDEX SKIP SCAN | IDX_CVS_RECEPTION | 1239 | | 101 (0)| 00:00:02 |
    |* 10 | INDEX RANGE SCAN | IDX_REC_BANKTASK | 1 | | 2 (0)| 00:00:01 |
    --------------------------------------------------------------------------------------------------------

    Predicate Information (identified by operation id):
    ---------------------------------------------------

    1 - filter("RN">TO_NUMBER(:UP)*TO_NUMBER(:DOWN)-TO_NUMBER(:DOWN))
    2 - filter(ROWNUM<=TO_NUMBER(:UP)*TO_NUMBER(:DOWN))
    4 - filter(ROWNUM<=TO_NUMBER(:UP)*TO_NUMBER(:DOWN))
    5 - filter(TO_DATE(:ENDTDATA,'yyyymmdd')+1>=TO_DATE(:STARTDATA,'yyyymmdd'))
    6 - filter("T"."DEAL_TIME"<=TO_DATE(:ENDTDATA,'yyyymmdd')+1 AND
    "T"."DEAL_TIME">=TO_DATE(:STARTDATA,'yyyymmdd') AND "T"."ACCOUNT_TYPE"=TO_NUMBER(:ACCOUNTTYPE)
    AND "T"."REGION"=TO_NUMBER(:REGION))
    8 - filter("M"."REGION"=TO_NUMBER(:REGION))
    9 - access("M"."ORG_ID"=:SITEID)
    filter("M"."ORG_ID"=:SITEID)
    10 - access("T"."RECEPTION_ID"="M"."RECEPTION_ID")

    sql的歷史執行計劃:

    sys@CRMDB4>select * from table(dbms_xplan.display_awr('88wdzpr9mv2wy'));

    PLAN_TABLE_OUTPUT
    --------------------------------------------------------------------------------------------------------------------------------------------
    SQL_ID 88wdzpr9mv2wy
    --------------------
    SELECT RECEPTION_ID,
    TRADE_CODE,
    AMOUNT,
    BANK_TYPE,
    ACCOUNT_TYPE,
    SRC_ACCOUNT_ID,
    DEST_ACCOUNT_ID,
    DEAL_TIME,
    RESULT,
    REC_TYPE,
    STATUS,
    entity_id,
    balance,
    is_rollback
    FROM (SELECT b.RECEPTION_ID,
    b.TRADE_CODE,
    b.AMOUNT,
    b.BANK_TYPE,
    b.ACCOUNT_TYPE,
    b.SRC_ACCOUNT_ID,
    b.DEST_ACCOUNT_ID,
    b.DEAL_TIME,
    b.RESULT,
    b.REC_TYPE,
    b.STATUS,
    b.entity_id,
    b.balance,
    b.is_rollback,
    rownum AS rn
    FROM (SELECT t.RECEPTION_ID,
    t.TRADE_CODE,
    t.AMOUNT,
    t.BANK_TYPE,
    t.ACCOUNT_TYPE,
    t.SRC_ACCOUNT_ID,
    t.DEST_ACCOUNT_ID,
    t.DEAL_TIME,
    t.RESULT,
    m.REC_TYPE,
    m.STATUS,
    m.entity_id,
    m.balance,
    m.is_rollback
    FROM cvs_rec_banktask t, cvs_reception m
    WHERE t.RECEPTION_ID = m.RECEPTION_ID
    AND t.DEAL_TIME BETWEEN to_date(:StartData, 'yyyymmdd') AND
    to_date(:EndtData, 'yyyymmdd') + 1
    AND t.ACCOUNT_TYPE = :AccountType
    AND m.org_id = :SiteId
    AND m.region = t.region
    AND m.region = :Region
    ORDER BY t.DEAL_TIME DESC) b
    WHERE rownum <= to_number(:up) * to_number(:down))
    WHERE rn > to_number(:up) * to_number(:down) - to_number(:down);


    Plan hash value: 511419205

    --------------------------------------------------------------------------------------------------------
    | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
    --------------------------------------------------------------------------------------------------------
    | 0 | SELECT STATEMENT | | | | 3453 (100)| |
    | 1 | VIEW | | 913 | 180K| 3453 (1)| 00:00:42 |
    | 2 | COUNT STOPKEY | | | | | |
    | 3 | VIEW | | 913 | 169K| 3453 (1)| 00:00:42 |
    | 4 | SORT ORDER BY STOPKEY | | 913 | 123K| 3453 (1)| 00:00:42 |
    | 5 | FILTER | | | | | |
    | 6 | TABLE ACCESS BY INDEX ROWID | CVS_REC_BANKTASK | 1 | 77 | 3 (0)| 00:00:01 |
    | 7 | NESTED LOOPS | | 913 | 123K| 3452 (1)| 00:00:42 |
    | 8 | TABLE ACCESS BY INDEX ROWID| CVS_RECEPTION | 913 | 56606 | 711 (0)| 00:00:09 |
    | 9 | INDEX SKIP SCAN | IDX_CVS_RECEPTION | 913 | | 74 (0)| 00:00:01 |
    | 10 | INDEX RANGE SCAN | IDX_REC_BANKTASK | 1 | | 2 (0)| 00:00:01 |
    --------------------------------------------------------------------------------------------------------


    36 rows selected.

    sql歷史中只出現過一種執行計劃,這個表示該sql在awr中沒有出現多種執行計劃而導致性能出現差異。

    相關表的統計信息:

    CVS_RECEPTION表的統計信息:
    Table Number Empty Chain Average Global Sample Date
    Name of Rows Blocks Blocks Count Row Len Stats Size MM-DD-YYYY
    ------------------------------ -------------- --------------- ------------ -------- ------- ------ -------------- ----------
    CVS_RECEPTION 2,257,580 305,08 0 0 90 YES 112,879 01-03-2015

    Column Distinct Number Number Sample Date
    Name Values Density Buckets Nulls Size MM-DD-YYYY
    ------------------------------ ------------ ----------- ------- ------------ -------------- ----------
    REGION 1 1.00000000 1 0 112,879 01-03-2015
    ORG_ID 1,822 .00054885 1 0 112,879 01-03-2015
    REC_TYPE 9 .11111111 1 0 112,879 01-03-2015
    ENTITY_ID 1,228,762 .00000081 1 5,820 112,588 01-03-2015

    Index Leaf Distinct Number AV Av Cluster Date
    Name BLV Blks Keys of Rows LEA Data Factor MM-DD-YYYY
    ------------------------------ --- ------------ -------------- -------------- ------- ------- ------------ ----------
    PK_CVS_RECEPTION 2 14,508 2,175,180 2,175,180 1 1 2,086,155 01-03-2015
    IDX_CVS_REGION_REC_DATE 2 13,965 1,671,330 2,279,948 1 1 2,181,132 01-03-2015
    IDX_CVS_RECEPTION 2 18,852 1,822 2,296,873 23 1,694 1,384,453 01-03-2015
    IDX_CVS_RECEPTION_ENTITY_ID 2 12,855 1,228,762 2,324,396 1 1 2,318,265 01-03-2015
    IDX_CVS_RECEPTION_FORMNUM 2 6,760 1 2,225,924 6,760 35,358 35,358 01-03-2015

    Index Column Col Column
    Name Name Pos Details
    ------------------------------ ------------------------------ ---- ------------------------
    IDX_CVS_RECEPTION REC_TYPE 1 VARCHAR2(10) NOT NULL
    ORG_ID 2 VARCHAR2(8) NOT NULL

    CVS_REC_BANKTASK表的統計信息:
    Table Number Empty Chain Average Global Sample Date
    Name of Rows Blocks Blocks Count Row Len Stats Size MM-DD-YYYY
    ------------------------------ -------------- --------------- ------------ -------- ------- ------ -------------- ----------
    CVS_REC_BANKTASK 3,899,140 452,98 0 0 77 YES 194,957 01-04-2015

    Column Distinct Number Number Sample Date
    Name Values Density Buckets Nulls Size MM-DD-YYYY
    ------------------------------ ------------ ----------- ------- ------------ -------------- ----------
    REGION 1 1.00000000 1 0 194,957 01-04-2015
    RECEPTION_ID 3,899,140 .00000026 1 0 194,957 01-04-2015
    ACCOUNT_TYPE 1 1.00000000 1 0 194,957 01-04-2015
    DEAL_TIME 2,644,869 .00000038 1 0 194,957 01-04-2015

    Index Leaf Distinct Number AV Av Cluster Date
    Name BLV Blks Keys of Rows LEA Data Factor MM-DD-YYYY
    ------------------------------ --- ------------ -------------- -------------- ------- ------- ------------ ----------
    IDX_REC_BANKTASK 2 25,300 3,721,460 3,721,460 1 1 3,503,660 01-04-2015

    Index Column Col Column
    Name Name Pos Details
    ------------------------------ ------------------------------ ---- ------------------------
    IDX_REC_BANKTASK RECEPTION_ID 1 VARCHAR2(32) NOT NULL

    sql的歷史執行信息:

    sys@CRMDB4>@sqlhis_add.sql
    Enter value for sql_id: 88wdzpr9mv2wy
    old 27: and a.sql_id = '&sql_id'
    new 27: and a.sql_id = '88wdzpr9mv2wy'

    BEGIN_TIME INSTANCE_NUMBER MODULE PLAN_HASH_VALUE EXEC PER_GET PER_ROWS TIME_S PER_READ
    ------------------- --------------- ------------------------------ ---------------- ---------- ---------- ---------- ---------- ----------
    2015-01-05 08:00:30 1 tpengine@winftux1 (TNS V1-V3) 511419205 70 93172 8.9 14.91 719.01
    2015-01-04 20:30:29 1 tpengine@winftux1 (TNS V1-V3) 511419205 119 98962 9.1 4.61 473.61
    2015-01-04 19:00:34 1 tpengine@winftux1 (TNS V1-V3) 511419205 727 32261 28.2 .58 47.44
    2015-01-04 17:30:13 1 tpengine@winftux1 (TNS V1-V3) 511419205 180 78200 21.1 4.24 425.64
    2015-01-04 16:30:54 1 tpengine@winftux1 (TNS V1-V3) 511419205 70 277336 9.8 11.37 584.23
    2015-01-04 09:30:18 1 tpengine@winftux1 (TNS V1-V3) 511419205 74 181718 14.5 15.93 988.64
    2015-01-04 07:30:17 1 tpengine@winftux1 (TNS V1-V3) 511419205 12 17221 9.2 18.77 2430.75
    2015-01-03 22:00:19 1 tpengine@winftux1 (TNS V1-V3) 511419205 47 0 9.8 15.35 867.7
    2015-01-03 18:00:39 1 tpengine@winftux1 (TNS V1-V3) 511419205 93 9879 8.9 6 344.46
    2015-01-03 17:30:32 1 tpengine@winftux1 (TNS V1-V3) 511419205 143 94887 9.2 3.04 248.31
    2015-01-03 15:30:04 1 tpengine@winftux1 (TNS V1-V3) 511419205 40 467928 9.6 6.06 272.18
    2015-01-03 15:00:40 1 tpengine@winftux1 (TNS V1-V3) 511419205 88 38890 7.7 8.39 669.23
    2015-01-02 18:00:28 1 tpengine@winftux1 (TNS V1-V3) 511419205 436 63315 26.1 1.02 82.67
    2015-01-02 10:30:13 1 tpengine@winftux1 (TNS V1-V3) 511419205 740 707283 27 6.15 9.71
    2015-01-02 10:00:06 1 tpengine@winftux1 (TNS V1-V3) 511419205 256 531298 22.4 5.26 138.29
    2015-01-02 07:30:31 1 tpengine@winftux1 (TNS V1-V3) 511419205 29 12594 7.2 11.02 1600.21
    2015-01-01 19:00:04 1 tpengine@winftux1 (TNS V1-V3) 511419205 143 24895 12.3 6.37 234.63
    2015-01-01 17:30:13 1 tpengine@winftux1 (TNS V1-V3) 511419205 447 46359 19.2 1.05 70.47
    2015-01-01 16:00:53 1 tpengine@winftux1 (TNS V1-V3) 511419205 447 45576 19.5 .68 48.81
    2015-01-01 11:30:11 1 tpengine@winftux1 (TNS V1-V3) 511419205 376 46110 21.5 1.63 116.57
    2015-01-01 10:30:36 1 tpengine@winftux1 (TNS V1-V3) 511419205 416 47588 21.4 1.21 79.76
    2014-12-31 20:00:08 1 tpengine@winftux1 (TNS V1-V3) 511419205 1071 726326 28 6.75 21.55
    2014-12-31 19:30:01 1 tpengine@winftux1 (TNS V1-V3) 511419205 3057 760690 28.9 7.35 18.57
    2014-12-31 14:30:51 1 tpengine@winftux1 (TNS V1-V3) 511419205 150 514830 21.1 12.26 438.05
    2014-12-30 20:30:03 1 tpengine@winftux2 (TNS V1-V3) 511419205 74 11074 8.8 9.14 631.47
    2014-12-30 19:30:26 1 tpengine@winftux2 (TNS V1-V3) 511419205 94 12433 8.4 8.28 545.99
    2014-12-30 18:30:12 1 tpengine@winftux2 (TNS V1-V3) 511419205 12578 135489 30 1.59 1.25
    2014-12-30 18:00:05 1 tpengine@winftux2 (TNS V1-V3) 511419205 7251 132103 29.8 1.57 7.55
    2014-12-30 14:30:17 1 tpengine@winftux2 (TNS V1-V3) 511419205 70 17396 8.3 11.17 814.97

    29 rows selected.

    通過對比每半個小時的平均邏輯讀部分時間段有較大的波動,在2014-12-31 19:30:01到2014-12-31 20:00:01時間段這個sql執行次數達到了3057次,每次平均邏輯讀達到了76萬以上,而有些時間段的這個sql的平均邏輯讀只有幾萬,這個表示通過綁定變量傳遞過來的值會有傾斜值。

    對比執行計劃造成邏輯讀在不同時間段存在差異的只可能是tbcs.cvs_reception表,而這個表是作為nested loop循環的驅動表,對應的執行計劃和謂詞部分如下:

    |* 8 | TABLE ACCESS BY INDEX ROWID| CVS_RECEPTION | 1239 | 76818 | 862 (1)| 00:00:11 |
    |* 9 | INDEX SKIP SCAN | IDX_CVS_RECEPTION | 1239 | | 101 (0)| 00:00:02 |

    8 - filter("M"."REGION"=TO_NUMBER(:REGION))
    9 - access("M"."ORG_ID"=:SITEID)
    filter("M"."ORG_ID"=:SITEID)

    看來造成邏輯讀存在差異的只可能是org_id和region兩列,而region這列根據表的統計信息只有一組distinct value,那么只可能是org_id這個對應的綁定變量:SITEID存在有傾斜值,造成了平均邏輯讀在這個時間段特別大,然而sql在這個時間段執行頻率又特別高,進而導致消耗了較多的db time

    來看看表tbcs.cvs_reception的org_id傾斜值

    SQL> select * from (select org_id,count(*) from tbcs.cvs_reception group by org_id order by count(*) desc) where rownum<20;

    ORG_ID COUNT(*)
    -------- ----------
    11001259 310378
    11001012 54970
    11921362 45549
    11001413 43398
    11001585 32380
    11001721 31680
    11001709 30608
    11001711 30524
    11001586 30341
    11001710 29909
    11001708 29734
    11001707 29733
    11001715 29332
    11001705 28501
    11001716 27750
    11001361 27555
    11001712 27412
    11001713 26680
    11001360 26611

    19 rows selected


    SQL> select 2257580*0.00054885 from dual;

    2257580*0.00054885
    ------------------
    1239.072783

    優化器評估的INDEX SKIP SCAN IDX_CVS_RECEPTION 部分返回的rows是1239(在沒有直方圖的情況下,優化器計算等值謂詞的選擇selectivy公式是1/distinct*((num_rows-null_rows)/num_rows))

    oracle抓取綁定變量的規律有兩種:
    1 硬解析的sql被執行時,oracle會抓取該sql的綁定變量
    2 軟解析/軟軟解析的sql重復執行時,oracle也會抓取綁定變量,不過這里oracle只會每隔15分鐘抓取一次綁定變量,這里抓取的值不一定具有代表性。

    SQL> select value_string, last_captured
    2 from dba_hist_sqlbind
    3 where sql_id = '88wdzpr9mv2wy'
    4 and name = ':SITEID'
    5 order by last_captured desc
    6 ;

    VALUE_STRING LAST_CAPTURED
    -------------------------------------------------------------------------------- ------------------------------
    11876365 2015/1/4 20:58:23
    11791996 2015/1/4 19:25:19
    11863035 2015/1/4 17:51:34
    11001259 2015/1/4 16:49:52
    11972820 2015/1/4 9:54:02
    11167400 2015/1/4 7:50:47
    11877553 2015/1/1 1:01:37
    11877553 2015/1/1 1:01:37
    11877553 2015/1/1 1:01:37
    11877553 2015/1/1 1:01:37
    11877553 2015/1/1 1:01:37
    11877553 2015/1/1 1:01:37
    11877553 2015/1/1 1:01:37
    11877553 2015/1/1 1:01:37
    11877553 2015/1/1 1:01:37
    11877553 2015/1/1 1:01:37
    11877553 2015/1/1 1:01:37
    11877553 2015/1/1 1:01:37
    11877553 2015/1/1 1:01:37
    11877553 2015/1/1 1:01:37
    11257437 2014/12/31 20:30:32
    11001259 2014/12/31 20:00:15
    11001259 2014/12/31 15:00:11
    11289153 2014/12/30 20:49:37
    11587654 2014/12/30 19:47:02
    11001012 2014/12/30 18:53:50
    11001585 2014/12/30 18:23:50
    11001262 2014/12/30 14:54:52
    11001454 2014/12/30 12:44:47
    11001418 2014/12/30 7:53:54
    11872880 2014/12/27 23:29:56
    11872880 2014/12/27 23:29:56
    11872880 2014/12/27 23:29:56
    11872880 2014/12/27 23:29:56
    11872880 2014/12/27 23:29:56
    11872880 2014/12/27 23:29:56

    36 rows selected

    這里運氣可能比較好,oracle這里在2014/12/31 20:00:15抓取的bind value剛好是傾斜值11001259(如果剛好故障時間段抓到是一個沒有傾斜性的值,大家也不要判定覺得這個sql在這個時間段是沒有傳入傾斜值的),這個值實際通過index skip scan部分要返回310378條數據,而這里又要走nested loop的方式,相當于底層的被驅動表CVS_REC_BANKTASK要走310378次index range scan,正是循環次數的增多導致這個sql會消耗較多的IO資源。

    SQL> select name, last_captured, value_string, datatype_string
    2 from dba_hist_sqlbind
    3 where sql_id = '88wdzpr9mv2wy'
    4 and last_captured =
    5 to_date('2014/12/31 20:00:15', 'yyyy-mm-dd hh24:mi:ss')
    6 ;

    NAME LAST_CAPTURED VALUE_STRING DATATYPE_STRING
    ------------------------------ ----------------------------------- ------------------------------ ---------------
    :DOWN 2014/12/31 20:00:15 30 VARCHAR2(32)
    :DOWN 2014/12/31 20:00:15 30 VARCHAR2(32)
    :UP 2014/12/31 20:00:15 101 VARCHAR2(32)
    :DOWN 2014/12/31 20:00:15 30 VARCHAR2(32)
    :UP 2014/12/31 20:00:15 101 VARCHAR2(32)
    :REGION 2014/12/31 20:00:15 11 VARCHAR2(32)
    :SITEID 2014/12/31 20:00:15 11001259 VARCHAR2(32)
    :ACCOUNTTYPE 2014/12/31 20:00:15 30 VARCHAR2(32)
    :ENDTDATA 2014/12/31 20:00:15 20141231 VARCHAR2(32)
    :STARTDATA 2014/12/31 20:00:15 20141231 VARCHAR2(32)

    10 rows selected

    帶入具體的bind value值,來驗證sql的資源消耗

    variable down varchar2(32);
    variable up varchar2(32);
    variable region varchar2(32);
    variable siteid varchar2(32);
    variable ACCOUNTTYPE varchar2(32);
    variable ENDTDATA varchar2(32);
    variable STARTDATA varchar2(32);
    exec :down:='30';
    exec :up:='101';
    exec :region:='11';
    exec :siteid:='11001259';
    exec :ACCOUNTTYPE:='30';
    exec :ENDTDATA:='20141231';
    exec :STARTDATA:='20141231';

    sys@CRMDB4>SELECT RECEPTION_ID,
    2 TRADE_CODE,
    3 AMOUNT,
    4 BANK_TYPE,
    5 ACCOUNT_TYPE,
    6 SRC_ACCOUNT_ID,
    7 DEST_ACCOUNT_ID,
    8 DEAL_TIME,
    9 RESULT,
    10 REC_TYPE,
    11 STATUS,
    12 entity_id,
    13 balance,
    14 is_rollback
    15 FROM (SELECT b.RECEPTION_ID,
    16 b.TRADE_CODE,
    17 b.AMOUNT,
    18 b.BANK_TYPE,
    19 b.ACCOUNT_TYPE,
    20 b.SRC_ACCOUNT_ID,
    21 b.DEST_ACCOUNT_ID,
    22 b.DEAL_TIME,
    23 b.RESULT,
    24 b.REC_TYPE,
    25 b.STATUS,
    26 b.entity_id,
    27 b.balance,
    28 b.is_rollback,
    29 rownum AS rn
    30 FROM (SELECT t.RECEPTION_ID,
    31 t.TRADE_CODE,
    32 t.AMOUNT,
    33 t.BANK_TYPE,
    34 t.ACCOUNT_TYPE,
    35 t.SRC_ACCOUNT_ID,
    36 t.DEST_ACCOUNT_ID,
    37 t.DEAL_TIME,
    38 t.RESULT,
    39 m.REC_TYPE,
    40 m.STATUS,
    41 m.entity_id,
    42 m.balance,
    43 m.is_rollback
    44 FROM tbcs.cvs_rec_banktask t, tbcs.cvs_reception m
    45 WHERE t.RECEPTION_ID = m.RECEPTION_ID
    46 AND t.DEAL_TIME BETWEEN to_date(:StartData, 'yyyymmdd') AND
    47 to_date(:EndtData, 'yyyymmdd') + 1
    48 AND t.ACCOUNT_TYPE = :AccountType
    49 AND m.org_id = :SiteId
    50 AND m.region = t.region
    51 AND m.region = :Region
    52 ORDER BY t.DEAL_TIME DESC) b
    53 WHERE rownum <= to_number(:up) * to_number(:down))
    54 WHERE rn > to_number(:up) * to_number(:down) - to_number(:down);

    30 rows selected.


    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 511419205

    --------------------------------------------------------------------------------------------------------
    | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
    --------------------------------------------------------------------------------------------------------
    | 0 | SELECT STATEMENT | | 1239 | 245K| 4582 (1)| 00:00:55 |
    |* 1 | VIEW | | 1239 | 245K| 4582 (1)| 00:00:55 |
    |* 2 | COUNT STOPKEY | | | | | |
    | 3 | VIEW | | 1239 | 229K| 4582 (1)| 00:00:55 |
    |* 4 | SORT ORDER BY STOPKEY | | 1239 | 168K| 4582 (1)| 00:00:55 |
    |* 5 | FILTER | | | | | |
    |* 6 | TABLE ACCESS BY INDEX ROWID | CVS_REC_BANKTASK | 1 | 77 | 3 (0)| 00:00:01 |
    | 7 | NESTED LOOPS | | 1239 | 168K| 4581 (1)| 00:00:55 |
    |* 8 | TABLE ACCESS BY INDEX ROWID| CVS_RECEPTION | 1239 | 76818 | 862 (1)| 00:00:11 |
    |* 9 | INDEX SKIP SCAN | IDX_CVS_RECEPTION | 1239 | | 101 (0)| 00:00:02 |
    |* 10 | INDEX RANGE SCAN | IDX_REC_BANKTASK | 1 | | 2 (0)| 00:00:01 |
    --------------------------------------------------------------------------------------------------------

    Predicate Information (identified by operation id):
    ---------------------------------------------------

    1 - filter("RN">TO_NUMBER(:UP)*TO_NUMBER(:DOWN)-TO_NUMBER(:DOWN))
    2 - filter(ROWNUM<=TO_NUMBER(:UP)*TO_NUMBER(:DOWN))
    4 - filter(ROWNUM<=TO_NUMBER(:UP)*TO_NUMBER(:DOWN))
    5 - filter(TO_DATE(:ENDTDATA,'yyyymmdd')+1>=TO_DATE(:STARTDATA,'yyyymmdd'))
    6 - filter("T"."DEAL_TIME"<=TO_DATE(:ENDTDATA,'yyyymmdd')+1 AND
    "T"."DEAL_TIME">=TO_DATE(:STARTDATA,'yyyymmdd') AND "T"."ACCOUNT_TYPE"=TO_NUMBER(:ACCOUNTTYPE

    聲明:本網頁內容旨在傳播知識,若有侵權等問題請及時與本網聯系,我們將在第一時間刪除處理。TEL:177 7030 7066 E-MAIL:11247931@qq.com

    文檔

    傾斜值傳入導致sql資源消耗升高的案例分析

    傾斜值傳入導致sql資源消耗升高的案例分析:局方監控系統反饋2014-12-31 19:30:00-20:00:00這段時間db time上升較大,sql_id 88wdzpr9mv2wy消耗了12%以上的db time sql在shared pool的執行計劃 sys@CRMDB4select * from table(dbms_xplan.display_curs
    推薦度:
    標簽: 資源 上升 sql
    • 熱門焦點

    最新推薦

    猜你喜歡

    熱門推薦

    專題
    Top
    主站蜘蛛池模板: 99久久精品国产一区二区三区| 亚洲国产精品自在线一区二区| 久久青青草原精品国产| 9191精品国产免费久久| 久久精品aⅴ无码中文字字幕不卡| 大胸国产精品视频| 国产精品亚洲一区二区三区在线| 久久久久久久久久免免费精品 | 99精品免费视品| 亚洲精品二区国产综合野狼| 久久精品一区二区三区中文字幕 | 国产精品偷伦视频观看免费| 亚洲欧洲自拍拍偷精品 美利坚| 国产精品久久久久久一区二区三区| 无码国产精品一区二区免费3p| 久久国产香蕉一区精品| 丁香色婷婷国产精品视频| 黑人精品videos亚洲人| 99久久久国产精品免费无卡顿| 久久久久99精品成人片试看| 国产精品久久久久久搜索| 色欲精品国产一区二区三区AV| 男女男精品网站免费观看| 国产网红主播无码精品| 国产精品色视频ⅹxxx | 99久久精品午夜一区二区| 精品亚洲aⅴ在线观看| 亚洲av永久无码精品国产精品| 欧美成人精品网站播放| 精品人妻少妇一区二区三区不卡| 国产一区精品| 91精品国产91久久久久久| 大胸国产精品视频| 国产精品福利片免费看| 国产在线不卡午夜精品2021| 久热这里只有精品12| 午夜精品久久久久久99热| 久久久久久亚洲Av无码精品专口| 久久精品无码一区二区无码| 精品不卡一区二区| 国产AV无码专区亚洲精品|