• <fieldset id="8imwq"><menu id="8imwq"></menu></fieldset>
  • <bdo id="8imwq"><input id="8imwq"></input></bdo>
    最新文章專題視頻專題問答1問答10問答100問答1000問答2000關(guān)鍵字專題1關(guān)鍵字專題50關(guān)鍵字專題500關(guān)鍵字專題1500TAG最新視頻文章推薦1 推薦3 推薦5 推薦7 推薦9 推薦11 推薦13 推薦15 推薦17 推薦19 推薦21 推薦23 推薦25 推薦27 推薦29 推薦31 推薦33 推薦35 推薦37視頻文章20視頻文章30視頻文章40視頻文章50視頻文章60 視頻文章70視頻文章80視頻文章90視頻文章100視頻文章120視頻文章140 視頻2關(guān)鍵字專題關(guān)鍵字專題tag2tag3文章專題文章專題2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章專題3
    問答文章1 問答文章501 問答文章1001 問答文章1501 問答文章2001 問答文章2501 問答文章3001 問答文章3501 問答文章4001 問答文章4501 問答文章5001 問答文章5501 問答文章6001 問答文章6501 問答文章7001 問答文章7501 問答文章8001 問答文章8501 問答文章9001 問答文章9501
    當(dāng)前位置: 首頁 - 科技 - 知識百科 - 正文

    AnalyzingYourMongoDBDatawithAnalytica

    來源:懂視網(wǎng) 責(zé)編:小采 時間:2020-11-09 13:25:04
    文檔

    AnalyzingYourMongoDBDatawithAnalytica

    AnalyzingYourMongoDBDatawithAnalytica:This is a guest post by Nosh Petigara, president of Analytica Analytica is an analytics platform that makes it easy to analyze and report on data like user profiles, event logs, product catalogs, user-generated content, financial assets,
    推薦度:
    導(dǎo)讀AnalyzingYourMongoDBDatawithAnalytica:This is a guest post by Nosh Petigara, president of Analytica Analytica is an analytics platform that makes it easy to analyze and report on data like user profiles, event logs, product catalogs, user-generated content, financial assets,

    SET twitter.byHashtag = group(tweets.by(entities.hashtags.text)) //group our tweets by hashtag and store them in a calculated (virtual) collection called 'byHashtag'
    SET twitter.byHashtag.count = count(tweets) // counts up the number of tweets for each hashtags in our virtual collection
    SET twitter.tophashtags = orderdesc(byHashtag.by(count)) //sort the results in descending order
    

    Analytica uses dot notion to specify what collections, documents, or properties to operate on. Each SET command in Analytica results in a computation or the transformation of a set of documents, the results of which are stored in what we call calculated properties or calculated collections. These are intermediate results, stored in Analytica (at the database, collection, or document level - depending on how you specify them), which can be used in subsequent computations. Finally the command ‘twitter.tophashtags.(text, count)’ retrieves the text of the hashtags along with the count of how many tweets use that hashtag.

    Since we wanted to graph out our results, we used Analytica’s plug in for Excel to enter a series of Analytica script expressions. In addition to calculating the most tweeted hashtags, we also looked at the frequency of tweets per month from the @mongodb account, analyzed the content of @mongodb’s tweets to see how hashtags and URLs were being used, and computed a few other metrics. With this quick analysis, we saw that @mongodb’s tweeting patterns have changed over time (a lot more tweets recently!), figured out that over 80% of @mongodb’s tweets are retweeted at least once, and learnt (perhaps not surprisingly!) that the most popular tweets are about new releases. We graphed out the results and generated the HTML page to share with the MongoDB community.

    We’re holding a webinar with 10gen?on February 12 so that you can learn more about Analytica and ask questions. In the webinar, we’ll go through how you can use Analytica on your own data to produce in-depth analyses, dashboards and reports and become a data whiz! In the meantime you can?learn more and download the beta version of Analytica. You’ll be able to run Analytica against your own datasets or in an example we’ve put together on data from StackOverflow.

    If you are looking for other datasets to try, I’d recommend checking out Twitter’s API, Foursquare’s API, the NYTimes API, or Sunlight Labs API. Each of these has JSON, CSV or XML data that you can easily import into MongoDB to start analyzing with Analytica or MongoDB’s query language and aggregation framework. We’ll also post a step-by-step guide soon, which will describe how you can run an analysis on your own twitter history. We’d love to hear from you - you can email?with questions or feedback.

  • Analytica Documentation
  • Learn more about MongoDB and Analytica in the Webinar on Data Analytics and Business Intelligence with MongoDB and Analytica February 12 ?
  • Follow Analytica on Twitter
  • 聲明:本網(wǎng)頁內(nèi)容旨在傳播知識,若有侵權(quán)等問題請及時與本網(wǎng)聯(lián)系,我們將在第一時間刪除處理。TEL:177 7030 7066 E-MAIL:11247931@qq.com

    文檔

    AnalyzingYourMongoDBDatawithAnalytica

    AnalyzingYourMongoDBDatawithAnalytica:This is a guest post by Nosh Petigara, president of Analytica Analytica is an analytics platform that makes it easy to analyze and report on data like user profiles, event logs, product catalogs, user-generated content, financial assets,
    推薦度:
    標(biāo)簽: wi your data
    • 熱門焦點

    最新推薦

    猜你喜歡

    熱門推薦

    專題
    Top
    主站蜘蛛池模板: 国产在线观看一区精品| 久久精品中文字幕第23页| 成人午夜精品久久久久久久小说| 日韩精品无码免费视频| 青青草精品视频| 国内精品久久久久伊人av| 久久久久久一区国产精品| 精品久久久久久中文字幕| 久久精品国产亚洲77777| 欧美精品亚洲精品日韩专区| 91精品国产成人网在线观看| 国精品无码一区二区三区左线| 合区精品久久久中文字幕一区| 国产精品va在线观看无码| 好吊妞视频精品| 99精品国产在热久久无毒不卡| 久久久久99精品成人片直播| 亚洲国产精品嫩草影院久久| 久久精品成人| 国产综合精品蜜芽| 国产高清一级毛片精品| 久久91精品久久91综合| 国产成人精品日本亚洲专| 精品日韩亚洲AV无码 | 久久Av无码精品人妻系列| 久久久精品国产亚洲成人满18免费网站| 精品成人免费自拍视频| 51视频国产精品一区二区 | 亚洲精品老司机在线观看| 久久久精品久久久久特色影视| 国产精品福利电影一区二区三区四区欧美白嫩精品 | 国产精品超碰12396| 一本久久a久久精品综合夜夜| 精品一卡2卡三卡4卡免费视频 | 精品国产乱码久久久久久郑州公司 | 久久久一本精品99久久精品88| 骚片AV蜜桃精品一区| 久久亚洲精品成人AV| 精品久久久久久成人AV| 2020久久精品国产免费| 国产精品1024香蕉在线观看|